## Constraints on key <sup>17</sup>O( $\alpha,\gamma$ )<sup>21</sup>Ne resonances and impact on the weak s process

M. Williams,<sup>1,2,</sup> A.M. Laird,<sup>2</sup> A. Choplin,<sup>3</sup> P. Adsley,<sup>4,5</sup> B. Davids,<sup>1,6</sup> U. Greife,<sup>7</sup> K. Hudson,<sup>1,6</sup> D. Hutcheon,<sup>1</sup> A. Lennarz,<sup>1,8</sup> and C. Ruiz<sup>1</sup>

<sup>1</sup>TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

<sup>2</sup>Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

<sup>3</sup>Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP 226, B-1050 Brussels,

## Belgium

 <sup>4</sup>Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
<sup>5</sup>Department of Physics & Astronomy, Texas A&M University, College Station, Texas 77843, USA
<sup>6</sup>Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada

<sup>7</sup>Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA <sup>8</sup>Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada

This work has been published, M. Williams et al., Phys. Rev. C 105, 065805 (2022).



**Fig. 1**. MCP-DSSD time-of-flight against DSSD energy for one resonance in  ${}^{17}O(a,g)$ . The red circles show coincidence events within the separator time-of-flight window. The black line is the graphical cut around the  ${}^{21}Ne$  recoils. The colour plot are all of the events.



**Fig. 2**. s-process yields with various 17O(a,g) and 17O(a,n) reaction rates. The median, lower and upper curves show the s-process yields from the 17O(a,g) reaction rates from the present works. The Full Stellar Model curves show the reaction rate using the 17O(a,g) rate from Best *et al.*<sup>1</sup> or the Best rate divided by a factor of ten.